Abstract

Phospholipid methylation by intact Leydig cells was investigated by determining the incorporation of radioactivity from [3H-methyl] methionine into phospholipids. Leydig cells incorporated significantly more radioactivity into phospholipids than did unpurified testicular cells, non-Leydig testicular cells, or red blood cells. Approximately 40% of the radioactivity was found in phosphatidylcholine, indicating that the methyltransferase pathway for the synthesis of this phospholipid is highly active in rat Leydig cells. Addition of luteinizing hormone to cells preloaded with [3H-methyl] methionine did not alter the rate of phospholipid methylation. However, phospholipid methylation by Leydig cells desensitized by the injection of human chorionic gonadotropin 1 to 7 days previously was reduced by approximately 60%. Inhibition of phospholipid methylation to 75% of normal with homocysteine thiolactone did not affect luteinizing hormone-stimulated androgen production. Further inhibition of phospholipid (and protein) methylation by treatment with homocysteine thiolactone and 3-deazaadenosine significantly reduced luteinizing hormone-stimulated androgen production. The results of this study demonstrate that the methyltransferase pathway for the synthesis of phosphatidylcholine is highly active in intact Leydig cells but is reduced in desensitized Leydig cells. There does not appear to be a close association between the activity of this pathway and the ability of luteinizing hormone to acutely stimulate androgen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call