Abstract
The secretion of insulin can be elicited by a wide spectrum of stimuli including nutrients, hormones and neurotransmitters as well as a large number of pharmacological agents such as tumor-promoters and sulphonylureas. The diversity of these secretagogues suggests that islets may be activated through a number of distinct biochemical mechanisms. The work discussed in this review suggests that certain of the above-mentioned secretagogues, especially nutrient and neurotransmitter stimuli, may induce insulin secretion by a mechanism involving enhanced metabolism of inositol-containing lipids. The way in which this process is coupled to secretion is not known, although several possibilities exist. The hydrolysis of phosphoinositides and release of inositol phosphates may result, respectively in altered calcium permeability of the plasma membrane and mobilization of calcium from intracellular sources. The accompanying production of diacylglycerol might also influence membrane permeability and fluidity and also lead to activation of protein kinase C. Diacylglycerol can be phosphorylated to form phosphatidic acid which may play a role as an endogenous ionophore. Finally, inositol lipid breakdown could lead, through diacylglycerol and/or phosphatidic intermediates, to the liberation of arachidonic acid and subsequent conversion to active metabolites of the cyclo-oxygenase and lipoxygenase pathways. Thus, enhanced phospholipid metabolism in islets could, theoretically, result in the generation of a range of intracellular signals which mediate or modulate insulin secretion during stimulation by certain types of secretagogues. Continued investigation is clearly neccessary in order to elucidate the mechanisms by which such secretagogues provoke increased phospholipid metabolism and to understand the role(s) of this process in the regulation of islet function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.