Abstract

Phospholipids are major structural components of all cell membranes and participate in energy storage, signal transduction and environmental adaptability in eukaryotes. To date, the enzymes involved in phospholipid biosynthesis have been well characterized in budding yeast. However, their functions in filamentous fungi are largely unclear, especially their contribution to the interaction between phytopathogenic filamentous fungi and plants. In this study, we identified 10 phospholipid biosynthesis-related genes and genetically analyzed their functions in the Fusarium head blight pathogen Fusarium graminearum. The results of this study indicate that phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are critical for fungal vegetative growth. The biosynthesis of PE and PC is largely dependent on FgPsd2, FgCho2 and FgOpi3 in the de novo pathway of phospholipid biosynthesis in F. graminearum. Phospholipid biosynthetic gene mutants showed abnormal conidiation, increased sensitivity to fungicides and the oxidative stress agent H2O2, and defective endocytosis, especially the ΔFgpsd2, ΔFgcho2 and ΔFgopi3 mutants. Importantly, this study shows for the first time that the de novo pathway of phospholipid biosynthesis is required for mycotoxin production and full virulence in plant pathogenic fungi.

Highlights

  • A phospholipid bilayer with embedded, integral and peripheral proteins constitutes the basic skeleton of the cell membrane, which acts as a selectively permeable barrier to isolate the cell from the external environment and ensure the independence of biochemical reactions in living organisms

  • The results of this study indicate that PE and PC are critical for mycelial growth and that the biosynthesis of PE and PC is largely dependent on the de novo pathway in F. graminearum

  • The identified proteins involved in PE and PC biosynthesis in F. graminearum shared relatively low identity (31%– 54%) with their homologs (Table 1), structural analysis revealed that these proteins contained the same functional

Read more

Summary

Introduction

A phospholipid bilayer with embedded, integral and peripheral proteins constitutes the basic skeleton of the cell membrane, which acts as a selectively permeable barrier to isolate the cell from the external environment and ensure the independence of biochemical reactions in living organisms. PE and PC are synthesized via both endogenous (the de novo pathway) and exogenous pathways (the Kennedy pathway) (Daum et al 1998; Gibellini and Smith 2010; Cassilly and Reynolds 2018). PE is methylated by two types of (2019) 1:16 phospholipid methyltransferases, Cho and Opi, using S-adenosyl-L-methionine as the methyl donor to yield PC (Daum et al 1998; Gibellini and Smith 2010)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.