Abstract

The aim of this work to study the feasibility of using phospholipid free vesicles with positive charge inducer in a slowly dissolving polymer ocular insert to successfully control intraocular pressure (IOP) for an extended period. Brinzolamide (BRNZ) was chosen as a model drug and a full factorial design was assembled to investigate the drug loading effect, ratio of cholesterol to fatty moiety and the type of the fatty moiety used on the vesicle size and entrapment efficiency. Linear regression models were constructed, and optimization of the formulation compositions yielded two formulae with palmitic acid as a negatively charged vesicles and cetrimide positively charged vesicles. Both formulae were studied in term of permeation efficiency through bovine corneal membranes. Positively charged vesicles although it didn't achieve the highest flux and cumulative amount permeated per unit surface area in the experiment time course, it achieved the highest retention of drug inside the corneal tissue, so it was chosen to be incorporated in a slowly dissolving polymer ocular insert. The insert was evaluated in term content, physical evaluation, and release properties. In vivo evaluation of the casted ocular inserts was conducted in male albino rabbits against market eye drop product and IOP readings were collected for 48 hours. The positively charged sterosomes containing BRNZ and formulated in polymer ocular inserts achieved extended control of IOP of the test animals compared to the market product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call