Abstract

Nanomaterials hold much promise for biological applications, but they require appropriate functionalization to provide biocompatibility in biological environments. For noncovalent functionalization with biocompatible polymers, the polymer must also remain attached to the nanomaterial after removal of its excess to mimic the high-dilution conditions of administration in vivo. Reported here are the synthesis and utilization of singly substituted conjugates of dextran and a phospholipid (dextran-DSPE) as stable coatings for nanomaterials. Suspensions of single-walled carbon nanotubes were found not only to be stable to phosphate buffered saline (PBS), serum, and a variety of pH's after excess polymer removal, but also to provide brighter photoluminescence than carbon nanotubes suspended by poly(ethylene glycol)-DSPE. In addition, both gold nanoparticles (AuNPs) and gold nanorods (AuNRs) were found to maintain their dispersion and characteristic optical absorbance after transfer into dextran-DSPE and were obtained in much better yield than similar suspensions with PEG-phospholipid and commonly used thiol-PEG. These suspensions were also stable to PBS, serum, and a variety of pH's after removal of excess polymer. dextran-DSPE thus shows great promise as a general surfactant material for the functionalization of a variety of nanomaterials, which could facilitate future biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.