Abstract

Myosin X is involved in the reorganization of the actin cytoskeleton and protrusion of filopodia. Here we studied the molecular mechanism by which bovine myosin X is regulated. The globular tail domain inhibited the motor activity of myosin X in a Ca(2+)-independent manner. Structural analysis revealed that myosin X is monomeric and that the band 4.1-ezrin-radixin-moesin (FERM) and pleckstrin homology (PH) domains bind to the head intramolecularly, forming an inhibited conformation. Binding of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P(3)) to the PH domain reversed the tail-induced inhibition and induced the formation of myosin X dimers. Consistently, disruption of the binding of PtdIns(3,4,5)P(3) attenuated the translocation of myosin X to filopodial tips in cells. We propose the following mechanism: first, the tail inhibits the motor activity of myosin X by intramolecular head-tail interactions to form the folded conformation; second, phospholipid binding reverses the inhibition and disrupts the folded conformation, which induces dimer formation, thereby activating the mechanical and cargo transporter activity of myosin X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.