Abstract

Thermoresponsive nanocomposites were prepared by immobilizing a 2–3 nm thick phospholipid layer on the surface of superparamagnetic Fe3O4 nanoparticles via high-affinity avidin/biotin interactions. Morphological and physicochemical surface properties were assessed using transmission electron microscopy, confocal laser scanning microscopy, differential scanning calorimetry, and attenuated total reflectance Fourier transform infrared spectroscopy. The zeta potential of Fe3O4 colloids in phosphate buffered saline (PBS) decreased from -23.6 to -5.0 mV as a consequence of phospholipid immobilization. Nevertheless, heating properties of these superparamagnetic nanoparticles within an alternating magnetic field were not significantly affected. Hyperthermia-relevant temperatures > 40°C were achieved within 10–15 min using a 7-mT magnetic field alternating at a frequency of 1 MHz. Loading of the surface-associated phospholipid layer with the hydrophobic dye dansylcadaverine was accomplished at an efficiency of 479 ng/mg Fe3O4 . Release of this drug surrogate was temperature-dependent, resulting in a 2.5-fold greater release rate when nanoparticles were exposed to a temperature above the experimentally determined melting temperature of 39.7°C. These data underline the feasibility of preparing novel, stimulus-induced drug delivery systems where payload release from a colloid-immobilized phospholipid assembly is triggered by hyperthermia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.