Abstract

During contiguous pairings of light and rotation, B photoreceptors in the Hermissenda eye undergo an increase in excitability that contributes to a modification of several light-elicited behaviors. This excitability increase requires a light-induced rise in intracellular Ca 2+ in the photoreceptor concomitant with transmitter binding to G protein-coupled receptors as a result of presynaptic vestibular hair cell stimulation. Phospholipases and arachidonic acid (ArA) are here reported to be involved in independent signal transduction pathways that underlie both receptor function and activity-dependent facilitation of the B photoreceptor. 4-Bromophenacyl bromide (BPB), an inhibitor of phospholipases A 2 (PLA 2) and C (PLC), blocked the generation of light-induced depolarizing generator potentials, but had no affect on the inhibitory postsynaptic potential (IPSP) in the B cell that results from hair cell stimulation. Quinacrine, which predominantly blocks the activity of PLA 2 in neurons, had no affect on either the light response or the IPSP, but did block increases in excitability (i.e. increased input resistance and elicited spike rate) of the B cell that results from pairings of light and presynaptic vestibular stimulation (i.e., in vitro associative conditioning). Neither nordihydroquararetic acid (NDGA), which inhibits metabolism of ArA by cyclooxygenase, nor indomethacin, which inhibits lipoxygenase metabolism of ArA, affected the light response or IPSP, but both blocked the increases in excitability in the B cell that accompanied in vitro conditioning. In combination with earlier results, these data suggest that ArA activates PKC in a synergistic fashion with Ca 2+ and diacylglycerol in the B cell, and suggest that PLA 2-induced ArA release, though not necessary for transduction of light or the hair cell-induced IPSP in the B cell, is a critical component of the convergence of signals that precipitates associative facilitation in this system. © 1997 Elsevier Science B.V. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.