Abstract

The signal transductional mechanisms regulating the activation of NADPH oxidase, the respiratory burst enzyme in phagocytic cells, are not completely understood. Receptors for most physiologic stimuli trigger the activation of various phospholipases, including phospholipases A2, C, and D. The lipid mediators formed (arachidonic acid, 1,2-diacylglycerol, and phosphatidic acid) have been implicated as second messengers in the induction of the respiratory burst. In intact cells, we have correlated phospholipase D activation and the production of phosphatidic acid with the activation of NADPH oxidase, using the drug propranolol. Phosphatidic acid activated NADPH oxidase in a cell-free system, but the level of activation was low. 1,2-Diacylglycerol markedly enhanced NADPH oxidase activation by phosphatidic acid. The synergistic effect required the diacyl species, since mono- or tri-acylglycerols were ineffective. Phosphatidic acid could be replaced by either lysophosphatidic acid or phosphatidylserine, but not by phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol, suggesting specificity for an anionic phospholipid. Since other cell-free activators of NADPH oxidase (arachidonic acid, sodium dodecyl sulfate) are also anionic amphiphiles, phosphatidic acid may directly interact with an enzyme component(s). The targets for phosphatidic acid and diacylglycerol in the cell-free system are currently under investigation. These results emphasize the critical importance of phospholipases, particularly phospholipase D, in the regulation of the respiratory burst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call