Abstract

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to accumulation of 15-hydroperoxy-arachidonoyl-PE (15-HpETE-PE) generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, PEBP1. As Ca2+-independent phospholipase PLA2 (iPLA2β, PLA2G6/PNPLA9 gene), can preferentially hydrolyze peroxidized phospholipids, it may eliminate ferroptotic 15-HpETE-PE death signal. Here we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2β averts ferroptosis whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6/PNPLA9 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson’s disease (PD)-associated mutation fPDR747W and found selectively decreased 15-HpETE-PE hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-CAS9-engineered PNPLA9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein mutant SNCA-A53T mice with decreased iPLA2β expression and PD-relevant phenotype. Thus, iPLA2β is a new ferroptosis regulator and its mutations may be implicated in PD pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.