Abstract

The purpose of this study was to identify the role of phospholipase D2 (PLD2) in lipopolysaccharide (LPS)-induced nitric oxide (NO) synthesis. LPS enhanced NO synthesis and inducible nitric oxide synthase (iNOS) expression in macrophage cell line, Raw 264.7 cells. When Raw 264.7 cells were stimulated with LPS, the expressions of PLDs were increased. Thus, to investigate the role of PLD in NO synthesis, we transfected PLD1, PLD2, and their dominant negative forms to Raw 264.7 cells, respectively. Interestingly, only PLD2 overexpression, but not that of PLD1, increased NO synthesis and iNOS expression. Moreover, LPS-induced NO synthesis and iNOS expression were blocked by PLD2 siRNA, suggesting that LPS upregulates NO synthesis through PLD2. Next, we investigated the S6K1-p42/44 MAPK-STAT3 signaling pathway in LPS-induced NO synthesis mechanism. Knockdown of PLD2 with siRNA also decreased phosphorylation of S6K1, p42/44 MAPK and STAT3 induced by LPS. Furthermore, we found that STAT3 bound with the iNOS promoter, and their binding was mediated by PLD2. Taken together, our results demonstrate the importance of PLD2 for LPS-induced NO synthesis in Raw 264.7 cells with involvement of the S6K1-p42/44 MAPK-STAT3 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call