Abstract

High sensitivity of seeds to water loss is a widespread phenomenon in the world's plant species. The molecular basis of this trait is poorly understood but thought to be associated with critical changes in membrane function. We profiled membrane lipids of seeds in eight species with varying levels of desiccation tolerance and found a close association between reducing seed viability and increasing phosphatidic acid (PA). We applied hydration-dehydration cycles to Arabidopsis seeds, which are normally desiccation tolerant, to mimic the onset of desiccation sensitivity with progression towards germination and examined the role of phospholipase D (PLD) in desiccation stress-induced production of PA. We found that PLDα1 became more abundant and migrated from the cytosol to the membrane during desiccation, whereas PLDδ did not change, and that all desiccation-induced PA was derived from PLDα1 hydrolysis. When PLDα1 was suppressed, the germination level after each hydration-dehydration cycle improved significantly. We further demonstrated that PLDα1-mediated PA formation modulates desiccation sensitivity as applying its inhibitor improved seed desiccation tolerance and its suppression in protoplasts enhanced survival under dehydration. The insights provided by comparative lipidomics enable us to propose a new membrane-based model for seed desiccation stress and survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.