Abstract

Phospholipase D (PLD) is elevated in rodent fibroblasts expressing activated H-Ras mutants. We therefore examined the PLD activity in human cancer cells with activating Ras mutations. T24 bladder carcinoma cells express an activated H-Ras gene and Calu-1 lung carcinoma cells express an activated K-Ras gene. We report here that both of these cancer cell lines express highly elevated levels of PLD activity and that the PLD activity is dependent upon Ras. We also show that the PLD activity is dependent upon the Ras effector molecules RalA and phosphatidylinositol-3-kinase (PI3K). PLD activity has been shown to provide a survival signal in breast cancer cell lines that suppressed stress-induced apoptosis. Suppression of PLD activity in the T24 and Calu-1 cells resulted in apoptotic cell death in the absence of serum, indicating that the elevated PLD activity provided a survival signal in these cancer cell lines. Suppression of Ras, RalA, or PI3K also led to apoptosis in the absence of serum. These data indicate that a critical component of Ras signaling in human cancer cells is the activation of PLD and that targeting PLD survival signals in cancer cells could be an effective strategy to induce apoptosis in human cancers with activating Ras mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.