Abstract

Reactive oxygen species (ROS) are implicated in the pathophysiology of a number of vascular disorders, including atherosclerosis. Recent studies indicate that ROS modulate signal transduction in mammalian cells. Previously, we have shown that ROS (hydrogen peroxide, fatty acid hydroperoxide, diperoxovanadate, and 4-hydroxynonenal) enhance protein tyrosine phosphorylation and activate phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). In the present study, our aim was to investigate the role of exogenous thiol agents on ROS-induced PLD activation in conjunction with the role of cellular thiols--glutathione (GSH) and protein thiols--on PLD activation and protein tyrosine phosphorylation. Pretreatment of BPAECs with N-acetyl-L-cysteine (NAC) or 2-mercaptopropionylglycine (MPG) blocked ROS-induced changes in intracellular GSH and PLD activation. Also, pretreatment with NAC attenuated diperoxovanadate-induced protein tyrosine phosphorylation. Pretreatment of BPAECs with diamide or L-buthionine-(S,R)-sulfoximine (BSO), agents that lower intracellular GSH and thiols, enhanced PLD activity. Furthermore, NAC blocked diamide- or BSO-mediated changes in GSH levels, PLD activity, and protein tyrosine phosphorylation. NAC also attenuated diamide-induced tyrosine phosphorylation of proteins between 69 and 118 KDa. These results support the hypothesis that modulation of thiol-redox status (cellular nonprotein and protein thiols) may contribute to the regulation of ROS-induced protein tyrosine phosphorylation and PLD activation in vascular endothelium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.