Abstract

Many ion channels are regulated by lipids, but prominent motifs for lipid binding have not been identified in most ion channels. Recently, we reported that phospholipase Cgamma1 (PLC-gamma1) binds to and regulates TRPC3 channels, components of agonist-induced Ca2+ entry into cells. This interaction requires a domain in PLC-gamma1 that includes a partial pleckstrin homology (PH) domain-a consensus lipid-binding and protein-binding sequence. We have developed a gestalt algorithm to detect hitherto 'invisible' PH and PH-like domains, and now report that the partial PH domain of PLC-gamma1 interacts with a complementary partial PH-like domain in TRPC3 to elicit lipid binding and cell-surface expression of TRPC3. Our findings imply a far greater abundance of PH domains than previously appreciated, and suggest that intermolecular PH-like domains represent a widespread signalling mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.