Abstract

In the cerebellum of neonatal mice, multiple climbing fibers (CFs) form excitatory synapses on each Purkinje cell (PC). Only one CF is strengthened in each PC from postnatal day 3 (P3) to P7, whereas the other weaker CFs are eliminated progressively from ∼P7 to ∼P11 (early phase of CF elimination) and from ∼P12 to ∼P17 (late phase of CF elimination). Type 1 metabotropic glutamate receptor (mGluR1) triggers a canonical pathway in PCs for the late phase of CF elimination. Among downstream signaling molecules of mGluR1, phospholipase C β3 (PLCβ3) and β4 (PLCβ4) are expressed complementarily in PCs of aldolase C (Aldoc)-positive (+) and Aldoc-negative (−) cerebellar compartments, respectively. PLCβ4 is reported to mediate the late phase of CF elimination in the anterior half of the cerebellar vermis which corresponds to the Aldoc (−) region. However, roles of PLCβ3 and Aldoc in CF synapse elimination are unknown. Here, we investigated CF innervation of PCs in Aldoc-tdTomato knock-in mice that underwent lentivirus-mediated knockdown (KD) of PLCβ3 in PCs during postnatal development. By recording CF-mediated excitatory postsynaptic currents from PCs and immunostaining CF synaptic terminals, we found that significantly higher percentage of PCs with PLCβ3-KD remained multiply innervated by CFs in Aldoc (+) compartments after P12, which was accompanied by impaired elimination of somatic CF synapses and reduced dendritic CF translocation. In contrast, deletion of Aldoc had no effect on CF synapse elimination. These results suggest that PLCβ3 is required for the late phase of CF elimination in Aldoc (+) PCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call