Abstract

Numerous studies have identified phospholipase metabolites as membrane fusogens, and phospholipase D (PLD) (J.R. Coorssen and R.J. Haslam. FEBS Lett. 316: 170-174, 1993), C (PLC), and A2 (PLA2) activities correlate with secretion. Do these enzymes have essential or modulatory roles? This study confirms that secretion does not require Ca2+ or PLC (Coorssen et al. Cell Regul. 1: 1027-1041, 1990). Arachidonic acid (AA), phosphatidic acid (PA) and analogues, exogenous metabolites of PLA2 and PLD, were tested in electropermeabilized human platelets. AA potentiated guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-induced secretion, and eicosanoids were not essential. Endogenous [3H]AA formation correlated with GTP gamma S-induced secretion, and phorbol 12-myristate 13-acetate (PMA) promoted these effects. Inhibitors were used to probe phospholipase influences on secretion. Only PLD inhibitors blocked secretion. However, PMA blocked inhibition of protein kinase C (PKC) and secretion by quercetin, suggesting that PA formed by PLD supports PKC activation and GTP gamma S-induced secretion. Thus PA analogues had no effect alone but enhanced GTP gamma S-induced PKC activity and secretion. Slower PLD activation compared with secretion also indicates a nonessential role. This is the first report of a Ca(2+)-independent PLA2 activity in human platelets, use of quercetin as a PLD inhibitor, and dissociation of PLA2, PLC, and PLD activities from secretion. No major phospholipase activities are essential to the final steps in exocytosis, but modulatory roles are indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call