Abstract
Phospholipase A(2) (PLA(2))-catalyzed hydrolysis of membrane phospholipids results in the stoichiometric production of a free fatty acid, most importantly arachidonic acid, and a lysophospholipid. Both of these phospholipid metabolites serve as precursors for inflammatory mediators such as eicosanoids or platelet-activating factor (PAF). Since it was initially discovered that non-steroidal anti-inflammatory drugs inhibit prostaglandin synthesis, a vast amount of drug development has been performed to selectively inhibit the production of the inflammatory metabolites of arachidonic acid while preserving their protective role. This research has culminated in the development of selective cyclooxygenase-2 (COX-2) inhibitors that act on the inducible, inflammatory COX enzyme, but do not affect the constitutive prostaglandin synthesis in cells that is mediated via COX-1. The development of PLA(2) inhibitors as potential anti-inflammatory agents has also been extensively pursued since the release of arachidonic acid from membrane phospholipids by PLA(3) is one of the rate-limiting factors for eicosanoid production. In addition to the production of eicosanoids, PLA(2)-catalyzed membrane phospholipid hydrolysis is also the initiating step in the generation of PAF, a potent inflammatory agent. Thus, inhibition of PLA(2) activity should, in theory, be a more effective anti-inflammatory approach. However, developing an inhibitor that would be selective for the production of inflammatory metabolites and not inhibit the beneficial properties of PLA(2) has so far proved to be elusive. This review will focus on agents used currently to inhibit PLA(2) activity and will explore their possible therapeutic use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.