Abstract

The aim of this study was to investigate the mechanism of the cytotoxic effect of beta-bungarotoxin (beta-BuTX), a presynaptic neurotoxin, on rat cerebellar granule neurons (CGNs). The maturation of CGNs is characterized by the prominent dense neurite networks that became fragmented after treatment with beta-BuTX, and this cytotoxic effect of beta-BuTX on CGNs was in a dose- and time-dependant manner. The cytotoxic effect of beta-BuTX was found to be more potent than other toxins, such as alpha-BuTX, cardiotoxin, melittin, and Naja naja atra venom phospholipase A(2). Meanwhile, undifferentiated neuroblastoma neuronal cell lines, IMR-32 and SK-N-MC, and astrocytes were found to be resistant to beta-BuTX. These results indicated that only the mature CGNs were sensitive to beta-BuTX insults. None of the following chemicals: antioxidants, K(+)-channel activator, K(+)-channel antagonists, intracellular Ca(2+) chelator, Ca(2+)-channel blockers, NMDA receptor antagonists, and nitric oxide synthase inhibitor tested, were able to reduce beta-BuTX-induced cytotoxicity. However, secretory type phospholipase A(2) inhibitors (glycyrrhizin and aristolochic acid) and a free radical scavenger (5,5-dimethyl pyrroline N-oxide, DMPO) could attenuate not only beta-BuTX-induced cytotoxicity but also ROS production and caspase-3 activation. These data suggest that phospholipase A(2) activity of beta-BuTX may be responsible for free radical generation and caspase-3 activation that accounts for the observed cytotoxic effect. It is proposed that the CGNs can be a useful tool for studying interactions of the molecules on neuronal plasma membrane with beta-BuTX that mediates the specific cytotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call