Abstract

We previously showed that transgenic mice expressing Ca(2+)/calmodulin-dependent protein kinase II delta(C) (CaMKII-TG) develop dilated cardiomyopathy associated with increased ryanodine receptors (RyR2) phosphorylation, enhanced sarcoplasmic reticulum (SR) Ca(2+) leak and lowering of SR Ca(2+) load. We hypothesized that phospholamban (PLN) ablation would restore SR Ca(2+) load and prevent the decreased ventricular contractility, dilation and mortality seen in CaMKII-TG. Our objectives were to generate CaMKII-TG mice lacking PLN, determine whether the maladaptive effects of cardiac CaMKIIdelta(C) expression were corrected, and establish the mechanistic basis for these changes. CaMKII-TG were crossed with PLN knockout (PLN-KO) mice to generate KO/TG mice. Myocytes from wild type (WT), CaMKII-TG, PLN-KO and KO/TG were compared. The decreased SR Ca(2+) load and twitch Ca(2+) transients seen in CaMKII-TG were normalized in KO/TG. Surprisingly the heart failure phenotype was exacerbated, as indicated by increased left ventricular dilation, decreased ventricular function, increased apoptosis and greater mortality. In KO/TG myocytes SR Ca(2+) sparks and leak were significantly increased, presumably because of the combined effects of restored SR Ca(2+) load and RyR2 phosphorylation. Mitochondrial Ca(2+) loading was increased in cardiomyocytes from KO/TG versus WT or CaMKII-TG mice and this was dependent on elevated SR Ca(2+) sparks. Cardiomyocytes from KO/TG showed poor viability, improved by inhibiting SR Ca(2+) release and mitochondrial Ca(2+) loading. Normalizing cardiomyocyte SR Ca(2+) loading in the face of elevated CaMKII and RyR2 phosphorylation leads to enhanced SR Ca(2+) leak and mitochondrial Ca(2+) elevation, associated with exacerbated cell death, heart failure and mortality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call