Abstract

Cardiomyocytes from failing hearts exhibit reduced levels of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) and/or increased activity of the endogenous SERCA inhibitor phospholamban. The resulting reduction in the Ca(2+) affinity of SERCA impairs SR Ca(2+) cycling in this condition. We have previously investigated the physiological impact of increasing the Ca(2+) affinity of SERCA by substituting SERCA2a with the higher affinity SERCA2b pump. When phospholamban was also ablated, these double knockouts (DKO) exhibited a dramatic reduction in total SERCA levels, severe hypertrophy, and diastolic dysfunction. We presently examined the role of cardiomyocyte Ca(2+) homeostasis in both functional and structural remodeling in these hearts. Despite the low SERCA levels in DKO, we observed near-normal Ca(2+) homeostasis with rapid Ca(2+) reuptake even at high Ca(2+) loads and stimulation frequencies. Well-preserved global Ca(2+) homeostasis in DKO was paradoxically associated with marked activation of the Ca(2+)-dependent nuclear factor of activated T-cell-calcineurin pathway known to trigger hypertrophy. No activation of the MAP kinase signaling pathway was detected. These findings suggest that local changes in Ca(2+) homeostasis may play an important signaling role in DKO, perhaps due to reduced microdomain Ca(2+) buffering by SERCA2b. Furthermore, alterations in global Ca(2+) homeostasis can also not explain impaired in vivo diastolic function in DKO. Taken together, our results suggest that normalizing global cardiomyocyte Ca(2+) homeostasis does not necessarily protect against hypertrophy and heart failure development and that excessively increasing SERCA Ca(2+) affinity may be detrimental.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call