Abstract
Using the tip-growing pollen tube of Arabidopsis thaliana and Nicotiana tabacum as a model to investigate endocytosis mechanisms, we show that phosphatidylinositol-4-phosphate 5-kinase 6 (PIP5K6) regulates clathrin-dependent endocytosis in pollen tubes. Green fluorescent protein-tagged PIP5K6 was preferentially localized to the subapical plasma membrane (PM) in pollen tubes where it apparently converts phosphatidylinositol 4-phosphate (PI4P) to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. RNA interference-induced suppression of PIP5K6 expression impaired tip growth and inhibited clathrin-dependent endocytosis in pollen tubes. By contrast, PIP5K6 overexpression induced massive aggregation of the PM in pollen tube tips. This PM abnormality was apparently due to excessive clathrin-dependent membrane invagination because this defect was suppressed by the expression of a dominant-negative mutant of clathrin heavy chain. These results support a role for PI(4,5)P(2) in promoting early stages of clathrin-dependent endocytosis (i.e., membrane invagination). Interestingly, the PIP5K6 overexpression-induced PM abnormality was partially suppressed not only by the overexpression of PLC2, which breaks down PI(4,5)P(2), but also by that of PI4Kβ1, which increases the pool of PI4P. Based on these observations, we propose that a proper balance between PI4P and PI(4,5)P(2) is required for clathrin-dependent endocytosis in the tip of pollen tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.