Abstract

By recombining subcellular components of 3T3-L1 adipocytes in a test tube, early insulin signaling events dependent on phosphatidylinositol 3-kinase (PI 3-kinase) were successfully reconstituted, up to and including the phosphorylation of glycogen synthase kinase-3 by the serine/threonine kinase, Akt (Murata, H., Hresko, R.C., and Mueckler, M. (2003) J. Biol. Chem. 278, 21607-21614). Utilizing the advantages provided by a cell-free methodology, we characterized phosphoinositide-dependent kinase 2 (PDK2), the putative kinase responsible for phosphorylating Akt on Ser-473. Immunodepleting cytosolic PDK1 from an in vitro reaction containing plasma membrane and cytosol markedly inhibited insulin-stimulated phosphorylation of Akt at the PDK1 site (Thr-308) but had no effect on phosphorylation at the PDK2 site (Ser-473). In contrast, PDK2 activity was found to be highly enriched in a novel cytoskeletal subcellular fraction associated with plasma membranes. Akt isoforms 1-3 and a kinase-dead Akt1 (K179A) mutant were phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate-dependent manner at Ser-473 in an in vitro reaction containing this novel adipocyte subcellular fraction. Our data indicate that this PDK2 activity is the result of a kinase distinct from PDK1 and is not due to autophosphorylation or transphosphorylation of Akt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.