Abstract

The phosphoinositide 3 (PI3) kinase plays a pivotal role in the regulation of dendritic cells (DCs), antigen-presenting cells that are able to initiate primary immune responses and to establish immunological memory. PI3 kinase is an endogenous suppressor of interleukin 12 (IL-12) production in DCs that is triggered by Toll-like receptor signaling. Inhibition of IL-12 production limits T helper 1 (Th1) polarization. On the other hand, PI3 kinase is an important regulator of various ion channels. The present study aimed to explore whether ion channels in DCs are regulated by PI3 kinase and whether they are important for DC function. To this end, DCs were isolated from murine bone marrow and ion channel activity was determined by patch clamp. As a result, DCs express voltage-gated K<sup>+</sup> channels (Kv), which are blocked by Stichodactyla helianthus toxin (ShK, 2.5 nM). A significant upregulation of Kv currents was observed upon maturation of DCs as induced by stimulation of the cells with lipopolysaccharide (LPS, 0.1 µg/ml, 48 h). A dramatic increase of Kv current amplitude was observed following preincubation of the cells with LY294002 (100 nM), a specific inhibitor of PI3 kinase. PI3 kinase inhibitor wortmannin (100 nM) similarly increased Kv current. LY294002 treatment was further followed by a significant increase of IL-12 production. ShK (100 nM) significantly blunted the stimulation of IL-12 release by LPS but not when the cells were first pretreated with LY294002. The observations point to Kv channel sensitive and Kv channel insensitive regulation of DC function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.