Abstract

We have shown recently that phosphoinositide 3-kinase (PI 3-kinase) accelerates the hypoxia-induced necrotic cell death of H9c2, derived from rat cardiomyocytes, by enhancing metabolic acidosis. Here we show the downstream events of acidosis that cause hypoxic cell death. Hypoxia induces the proteolysis of fodrin, a substrate of calpain. Intracellular Ca(2+) chelation by BAPTA, and the addition of SJA6017, a specific peptide inhibitor of calpain, also reduces cell death and fodrin proteolysis, indicating that Ca(2+) influx and calpain activation might be involved in these events. The overexpression of wild type PI 3-kinase accelerates fodrin proteolysis, while dominant-negative PI 3-kinase reduces it. Both (N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of the Na(+)/H(+) exchanger, and KB-R7943, an inhibitor of the Na(+)/Ca(2+) exchanger, reduce hypoxic cell death and fodrin proteolysis. The depletion of intracellular Ca(2+ )stores by thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase, also reduces cell death and fodrin proteolysis, indicating that Ca(2+ )release from intracellular Ca(2+ )stores might be also involved. These results indicate that PI 3-kinase might accelerate hypoxic cell death by enhancing the calpain-dependent proteolysis of fodrin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.