Abstract

Phosphohexose isomerase (PHI) is a member of the ectoenzyme/exoenzyme family and plays a key role in both glycolysis and gluconeogenesis pathways. Upon secretion PHI acts as a cytokine with tumor autocrine motility factor (AMF), neuroleukin (NLK) and maturation factor (MF) functions. Signaling is initiated by its binding to a cell surface 78 kDa glycoprotein (gp78). However, since PHI protein is a ‘leaderless’ secretory protein, released from cells via a non-classical route(s), we questioned whether the molecule undergoes post-translation modification while retaining proper folding and maintaining intact enzymatic and motogenic activities. To address this, we have generated, expressed and isolated a recombinant human AMF (rhAMF). The rhAMF retained the biological activities of the native AMF, i.e., catalyzes phosphohexose isomerization and stimulated cell motility. Additionally, we show here that human PHI is phosphorylated at serine 185 by casein kinase II (CK II) and we provide experimental evidence suggesting that this phosphorylation is associated with secretion, thus providing insights for elucidating the intracellular signal transmission of cell response to stimulation by AMF/NLK/MF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.