Abstract
Reduction of the high alkalinity of bauxite residue is a key problem to solve to make it suitable for plant growth and comprehensive utilization. In this study, phosphogypsum, a waste product from the phosphate fertilizer industry, was used to drive the alkaline transformation of the bauxite residue. Under optimal water washing conditions (liquid/solid ratio of 2 mL/g, 30°C, 24 hr), the impact of quantity added, reaction time and reaction mechanism during phosphogypsum application were investigated. Phosphogypsum addition effectively lowered pH levels and reduced the soluble alkalinity by 92.2%. It was found that the concentration of soluble Na and Ca ions in the supernatant increased gradually, whilst the exchangeable Na+ and Ca2+ in solid phase changed 112 mg/kg and 259 mg/kg, respectively. Ca2+ became the dominant element in the solid phase (phosphogypsum addition of 2%, liquid/solid ratio of 2 mL/g, 30°C, 12 hr). X-ray diffraction data indicated that cancrinite and hydrogarnet were the primary alkaline minerals. SEM images suggested that phosphogypsum could promote the formation of stable macro-aggregates, whilst the content of Ca2+ increased from 5.6% to 18.2% and Na reduced from 6.8% to 2.4%. Treatment with phosphogypsum could significantly promote the transformation of alkalinity cations by neutralization, precipitation and replacement reactions. This research provided a feasible method to promote soil formation of bauxite residue by phosphogypsum amendment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.