Abstract

(+/-)-(E)-4-Ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide] (NOR-3), a nitric-oxide (NO) donor, is known to increase HCO(3)(-) secretion in rat stomachs, intracellularly mediated by cGMP; yet, there is no information about the phosphodiesterase (PDE) isozyme involved in this process. We examined the effects of various isozyme-selective PDE inhibitors on the secretion of HCO(3)(-) in the mouse stomach in vitro and the type(s) of PDE isozymes involved in the response to NO. The gastric mucosa of DDY mice was stripped of the muscle layer and mounted on an Ussing chamber. HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. NOR-3, 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), and various PDE inhibitors were added to the serosal side. Vinpocetine (PDE1 inhibitor) or zaprinast (PDE5 inhibitor) was also added serosally 30 min before NOR-3 or 8-Br-cGMP. Both NOR-3 and 8-Br-cGMP stimulated HCO(3)(-) secretion in a dose-dependent manner, and the response to NOR-3 was significantly inhibited by methylene blue. Likewise, the secretion induced by NOR-3 or 8-Br-cGMP was significantly attenuated by 6-((2S,3S)-3-(4-chloro-2-methylphenylsulfonylaminomethyl)-bicyclo(2.2.2)octan-2-yl)-5Z-hexenoic acid (ONO-8711), the PGE receptor (EP)1 antagonist, as well as indomethacin and potentiated by both vinpocetine and zaprinast at doses that had no effect by themselves on the basal secretion, whereas other subtype-selective PDE inhibitors had no effect. NOR-3 increased the mucosal PGE(2) content in a methylene blue-inhibitable manner. These results suggest that NO stimulates gastric HCO(3)(-) secretion mediated intracellularly by cGMP and modified by both PDE1 and PDE5, and this response is finally mediated by endogenous PGE(2) via the activation of EP1 receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.