Abstract

Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c-di-GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c-di-GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c-di-GMP and phosphodiesterases that breakdown c-di-GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c-di-GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP-specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.