Abstract

Inhibition of phosphodiesterase 4 (PDE4) to increase endothelial cAMP and stabilize the endothelial barrier attenuates acute inflammatory increases in vascular permeability.We extended this approach to attenuate physiological increases in vascular permeability in response to atrial natriuretic peptide (ANP), which acts with the kidney to regulate plasma volume. We measured blood-to-tissue albumin clearance and changes in plasma volume in isoflurane-anaesthetized mice (C57BL/6J) pre-treated with rolipram (8 mg kg(-1) I.P., 30 min). Rolipram significantly reduced albumin permeability, measured using a dual-label fluorescence method, in skin and skeletal muscle compared with ANP alone (500 ng kg(-1) min(-1)). Skin and muscle tissue accounted for 70% of the reduction in whole body albumin clearance taking into account albumin clearance in gastrointestinal (GI) tissue, heart and kidney. The action of ANP and rolipram to modify albumin clearances in duodenum and jejunum could be accounted for by local increases in vascular perfusion to increase surface area for exchange. ANP increased haematocrit from 40.6% to 46.8%, corresponding to an average loss of 22% plasma fluid volume (227 μl), and this was almost completely reversed with rolipram. Renal water excretion accounted for less than 30% of plasma fluid loss indicating that reduced albumin permeability and reduced filtration into vasodilated GI tissue were the predominant actions of PDE4 inhibition. Similar fluid retention was measured in mice with endothelial-restricted deletion of the guanylyl cyclase-A receptor for ANP. Stabilizing the endothelial barrier to offset ANP-induced increases in vascular permeability may be part of a strategy to maintain plasma volume.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call