Abstract

The effect of sustained submaximal exercise on muscle energetics has been studied on the single-fiber level in human skeletal muscle. Seven subjects cycled to fatigue (mean 77 min) at a work rate corresponding to approximately 75% of maximal O2 uptake. Biopsies were taken from the vastus lateralis muscle at rest, at fatigue, and after 5 min of recovery. Muscle glycogen decreased from 444 +/- 40 (SE) mmol glucosyl units/kg dry wt at rest to 94 +/- 16. Postexercise glycogen was inversely correlated (P < 0.01) to muscle content of inosine monophosphate, a catabolite of ATP. Phosphocreatine (PCr) in mixed-fiber muscle decreased at fatigue to 37% but was restored above the initial value (106.5%, P < 0.025) after 5 min of recovery. The overshoot was localized to type I fibers. The rapid reversal of PCr is in contrast to the slow recovery in contraction force. Pi increased at fatigue but less than that expected from the changes in PCr and other phosphate compounds. Mean PCr at rest was approximately 20% higher in type II than in type I fibers (86.4 +/- 3.6 and 71.6 +/- 1.8 mmol/kg dry wt, respectively, P < 0.05), but at fatigue similar PCr contents were observed in the two fiber types. Reduction in PCr in all fibers at fatigue suggests that all fibers were recruited at the end of exercise. PCr content in single fibers showed a great variability in samples at rest, exercise, and recovery. The variability was more pronounced than for ATP, and the data suggest that it is due to interfiber physiological-biochemical differences. At fatigue ATP was maintained relatively high in all single fibers, but a pronounced depletion of PCr was observed in a large number of fibers, and this may contribute to fatigue through the associated increases in Pi or/and free ADP. It is noteworthy that the increase in calculated free ADP at fatigue was similar to that after high-intensity exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.