Abstract

We report the synthesis of a novel type of phosphinourea ligand, its coordination chemistry with rhodium, its use in the asymmetric hydroformylation of styrene, and investigations on the hydroformylation reaction mechanism. Complex studies on the 2:1 complex of phosphinourea to [Rh(acac)(CO)(2)] showed that a neutral trans-coordinating complex [Rh(HL-kappa P)(L-kappa O-2,P)(CO)] was formed. An anionic O,P-chelating ligand has displaced the anionic acac(-) ligand via an acid-base reaction involving the deprotonation of an acidic urea proton, giving Hacac. A second phosphinourea is coordinated as a neutral monodentate ligand and is linked to the chelating anionic ligand via an intramolecular hydrogen bond. The behavior of these supramolecular complexes in the hydroformylation reaction and the possible cooperative role of the ligands in the catalytic cycle were studied both experimentally and by computational methods. High-pressure NMR spectroscopy revealed that the catalytically active rhodium hydride species further consists of two neutral phosphinourea ligands and is in equilibrium with the neutral species [Rh(HL-kappa P)(L-kappa O-2,P)(CO)]. This equilibrium is likely an integrated part of a productive hydroformylation cycle involving a ligand-assisted reductive elimination of the aldehyde. DFT calculations revealed that the ligand-assisted mechanism could well be the preferred lower energetic pathway; however, the orientation of the anionic oxygen donor atom in [Rh(HL-kappa P)(L-K kappa O-2,P)(CO)] prevented us from finding a direct (nonsolvent assisted) transition state to connect the intermediates. We therefore cannot exclude a mechanism where [Rh(HL-kappa P)(L-kappa O-2,P)(CO)] is a dormant species outside the productive hydroformylation cycle, although the intermediate associated with this mechanism is higher in energy. Finally, the synthesis of heteroligated complexes was investigated, consisting of two electronically different phosphinoureas, which sets the stage for combinatorial supramolecular ligand approaches in catalysis. Simply mixing two electronically different phosphinoureas with metal precursor [Rh(acac)(CO)(2)] resulted in the formation of a heterobidentate ligand. A set of six new phosphinoureas was used to prepare such rhodium complexes in a combinatorial fashion for the asymmetric hydroformylation of styrene, resulting in high conversions and selectivities for the branched product and moderate enantioselectivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.