Abstract

The development of transition-state analogs is a major objective in enzymology, not only for developing potent inhibitors of enzymes but also for dissecting enzyme catalytic mechanisms. Phosphinic peptides, which share closed structural similarities with the transition-state of peptide substrate upon hydrolysis, have thus been considered for identifying potent inhibitors of proteases. Focusing on the zinc-proteases family, this review presents the most important synthetic efforts performed to obtain the desired compounds. Crystal structures of the phosphinic peptides in interaction with their zinc-protease targets are reported to illustrate the structural features which may explain the potency of these compounds and how they contribute to uncover key enzyme catalytic residues. Based on a remarkable metabolic stability, phosphinic peptides can be used to probe the in vivo function of zinc-proteases. Progress on chemistry and better understanding on the functional roles of zinc-proteases should allow transferring these compounds from shelf to clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call