Abstract

We report on a joint theoretical and experimental investigation of the electronic structure of a series of bis(diphenylphosphine oxide) derivatives containing a central aromatic core with high triplet energy. Such molecules can serve as host material in the emissive layer of blue electro-phosphorescent organic devices. The aromatic cores considered in the theoretical study consist of biphenyl, fluorene, dibenzofuran, dibenzothiophene, dibenzothiophenesulfone, or carbazole, linked to the two phosphoryl groups in either para or meta positions. With respect to the isolated core molecules, it is found that addition of the diphenylphosphine oxide moieties has hardly any impact on the core geometry and only slightly reduces the energy of the lowest triplet state (by, at most, ∼0.2 eV). However, the diphenylphosphine oxide functionalities significantly impact the ionization potential and electron affinity values, in a way that is different for para and meta substitutions. Excellent comparison is obtained between the experimental UPS and IPES spectra of the para biphenyl and meta dibenzothiophene and dibenzothiophenesulfone compounds and the simulated spectra. In general, the phosphine oxide derivatives present triplet energies that are calculated to be at least 0.2 eV higher than those of currently widely used blue phosphorescent emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.