Abstract

Deprotonation of the MnI NHC-phosphine complex fac-[MnBr(CO)3 (κ2 P,C-Ph2 PCH2 NHC)] (2) under a H2 atmosphere readily gives the hydride fac-[MnH(CO)3 (κ2 P,C-Ph2 PCH2 NHC)] (3) via the intermediacy of the highly reactive 18-e NHC-phosphinomethanide complex fac-[Mn(CO)3 (κ3 P,C,C-Ph2 PCHNHC)] (6 a). DFT calculations revealed that the preferred reaction mechanism involves the unsaturated 16-e mangana-substituted phosphonium ylide complex fac-[Mn(CO)3 (κ2 P,C-Ph2 P=CHNHC)] (6 b) as key intermediate able to activate H2 via a non-classical mode of metal-ligand cooperation implying a formal λ5 -P-λ3 -P phosphorus valence change. Complex 2 is shown to be one of the most efficient pre-catalysts for ketone hydrogenation in the MnI series reported to date (TON up to 6200).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.