Abstract

Simple SummaryChemotherapy, radiotherapy and surgery are the primary therapies for cancer. Even with these current treatment modalities, the death rate for many cancers is still high. Thus, there is still an urgent need for new therapeutic approaches which are safer and more effective. Cancer biomarker targeting is a promising strategy for cancer treatment. Cancer cells are distinguished from normal cells by their unregulated differentiation and over or under-expression of certain biomarkers or alteration of genetic material. In this review, we discuss phosphatidylserine biomarker-targeted therapy and imaging modalities in pre-clinical and clinical studies. We also appraise chemotherapy, radiotherapy and electric field-enhanced biomarker-driven therapeutic approaches.Cancer is among the leading causes of death worldwide. In recent years, many cancer-associated biomarkers have been identified that are used for cancer diagnosis, prognosis, screening, and early detection, as well as for predicting and monitoring carcinogenesis and therapeutic effectiveness. Phosphatidylserine (PS) is a negatively charged phospholipid which is predominantly located in the inner leaflet of the cell membrane. In many cancer cells, PS externalizes to the outer cell membrane, a process regulated by calcium-dependent flippases and scramblases. Saposin C coupled with dioleoylphosphatidylserine (SapC-DOPS) nanovesicle (BXQ-350) and bavituximab, (Tarvacin, human–mouse chimeric monoclonal antibodies) are cell surface PS-targeting drugs being tested in clinical trial for treating a variety of cancers. Additionally, a number of other PS-selective agents have been used to trigger cytotoxicity in tumor-associated endothelial cells or cancer cells in pre-clinical studies. Recent studies have demonstrated that upregulation of surface PS exposure by chemodrugs, radiation, and external electric fields can be used as a novel approach to sensitize cancer cells to PS-targeting anticancer drugs. The objectives of this review are to provide an overview of a unique dual-role of PS as a biomarker/target for cancer imaging and therapy, and to discuss PS-based anticancer strategies that are currently under active development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call