Abstract

The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components.

Highlights

  • Cell division and anisotropic cell expansion determine the final size and shape of plant organs

  • Similar JIM7-labeled pectin clumps were observed in the outermost regions of the cell wall of sui1-4 plants (S3E and S3F Fig), suggesting that the uppermost internodes were defective in pectin secretion and deposition

  • To determine if any soluble proteins or cell-wall-synthesis related enzymes have defective transport to the plasma membrane (PM) in sui1-4, we investigated trafficking of vesicles carrying OsCESA4, a member of the cellulose synthesis complex, which is believed to be synthesized in the endoplasmic reticulum (ER) and transported to PM via the trans Golgi network (TGN) [37,38]

Read more

Summary

Introduction

Cell division and anisotropic cell expansion determine the final size and shape of plant organs. Role of OsPSS-1 in Plant Development cellulose synthase genes result in altered cellulose contents and inhibition of cell elongation. Mutations of PSS in Schizosaccharomyces pombe (pps1Δ) and the fungus Candida albicans (cho1Δ/Δ) lead to slow growth due to cell-wall defects [19,20]. These results imply an unidentified role of PSS in regulation of cell expansion. We showed that mutation in OsPSS-1 in rice leads to defected cell expansion and compromised cell wall biosynthesis. Our results revealed a potential role of OsPSS-1 in cell wall component trafficking

Results
Discussion
Findings
Materials and Methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call