Abstract

Spectrin has been shown to interact with phosphatidylserine (PS), however, the precise binding sites for PS in spectrin have not been defined. In the present study, we have identified specific PS binding sites in spectrin using recombinant spectrin fragments encompassing the entire sequences of both spectrin chains. We show that sites of high affinity are located within eight of the 38 triple-helical structural repeats which make up the bulk of both chains: these are: α8 and α9-10, and β2, β3, β4, β12, β13 and β14, and PS affinity was also found in the non-homologous N-terminal domain of the β-chain. It is noteworthy that the PS-binding sites in β-spectrin are clustered in close proximity to the sites of attachment both of ankyrin and of 4.1R, the proteins engaged in attachment of spectrin to the membrane. We conjecture that direct interaction of spectrin with PS in the membrane complements modulates its interactions with the proteins, and that (considering also the known affinity of 4.1R for PS) the formation of PS-rich lipid domains, which have been observed in the red cell membrane, may be a result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.