Abstract

Leptin is known to selectively suppress neural and taste cell responses to sweet compounds. The sweet suppressive effect of leptin is mediated by the leptin receptor Ob-Rb, and the ATP-gated K+ (KATP ) channel expressed in some sweet-sensitive, taste receptor family 1 member 3 (T1R3)-positive taste cells. However, the intracellular transduction pathway connecting Ob-Rb to KATP channel remains unknown. Here we report that phosphoinositide 3-kinase (PI3K) mediates leptin's suppression of sweet responses in T1R3-positive taste cells. In in situ taste cell recording, systemically administrated leptin suppressed taste cell responses to sucrose in T1R3-positive taste cells. Such leptin's suppression of sucrose responses was impaired by co-administration of PI3K inhibitors (wortmannin or LY294002). In contrast, co-administration of signal transducer and activator of transcription 3 inhibitor (Stattic) or Src homology region 2 domain-containing phosphatase-2 inhibitor (SHP099) had no effect on leptin's suppression of sucrose responses, although signal transducer and activator of transcription 3 and Src homology region 2 domain-containing phosphatase-2 were expressed in T1R3-positive taste cells. In peeled tongue epithelium, phosphatidylinositol (3,4,5)-trisphosphate production and phosphorylation of AKT by leptin were immunohistochemically detected in some T1R3-positive taste cells but not in glutamate decarboxylase 67-positive taste cells. Leptin-induced phosphatidylinositol (3,4,5)-trisphosphate production was suppressed by LY294002. Thus, leptin suppresses sweet responses of T1R3-positive taste cells by activation of Ob-Rb-PI3K-KATP channel pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.