Abstract

To understand the roles of phosphoinositides [PtdIns] in phagocytosis of parasitic eukaryotes, we examined the interaction of phosphatidylinositol-3-phosphate [PtdIns(3)P] and putative PtdIns-P-binding proteins during phagocytosis in the enteric protozoan parasite Entamoeba histolytica. It was previously shown that phagocytosis in E. histolytica is indispensable for virulence and is inhibited by PtdIns 3-kinase inhibitors. We demonstrated by time-lapse live imaging that during the initiation of phagocytosis, the PtdIns(3)P biomarker GFP-Hrs-FYVE, was translocated to the phagocytic cup, phagosome, and to tunnel-like structures connecting the plasma membrane and phagosomes. E. histolytica possesses 12 FYVE domain-containing proteins (EhFP1-12), 11 of which also contain the RhoGEF/DH domain. Among them EhFP4 was shown to be recruited to the tunnel-like structures and to the proximal region of the phagosome. We further demonstrated that EhFP4 physically interacted with 4 of 10 predominant Rho/Rac small GTPases. Phosphoinositide binding assay showed that EhFP4 unexpectedly bound to PtdIns(4)P via the carboxyl-terminal domain and that the FYVE domain modulates the binding specificity of EhFP4 to PtdIns-P. Expression of the FYVE domain from EhFP4 inhibited phagocytosis while enhancement was observed when mammalian Hrs-FYVE domain was expressed. Altogether, we demonstrated that PtdIns(3)P, PtdIns(4)P and EhFP4 coordinately regulate phagocytosis and phagosome maturation in this parasitic eukaryote.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.