Abstract

The insoluble residue from Tetrahymena mimbres cells that had been preincubated in vivo for 2 h with [3H]myristic acid and then exhaustively delipidated with organic solvents retained radioactivity, principally in material which migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular mass of 10-14 kDa. This material was extractable from the delipidated cell residue with organic solvents known to solubilize phosphatidylinositol glycans (PI glycans). The same material could also be labeled with [3H]inositol, [14C]glucosamine, and [3H] ethanolamine. When the delipidated residue of cells labeled for 2 h with [3H]myristate was treated with phosphatidylinositol-specific phospholipase C or nitrous acid, much of the associated radioactivity was released. A similar release was obtained using the putative PI glycan fraction extracted from the cell residue. After further purification by thin layer chromatography, this latter material was hydrolyzed with HCl and shown to contain fatty acids, alkylglyceryl ethers, phosphate, inositol, glucosamine, mannose, and ethanolamine. The findings indicate that T. mimbres contains PI glycans resembling in structure those recently characterized in trypanosomes and mammalian cells. As the time of incubation with the radiotracers enumerated above was increased to 6-24 h, increasing amounts of radioactivity appeared in the 22-27-kDa region of sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. This higher molecular weight material is shown in the companion paper (Pak, Y., Ryals, P.E., and Thompson, G.A., Jr. (1991) J. Biol. Chem. 266, 15054-15059) to be released by in vivo phosphatidylinositol-specific phospholipase C treatment. Thus T. mimbres contains a pool of free PI glycans and at least one phosphatidylinositol-anchored protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.