Abstract

Phosphatidylinositol 3-kinase (PI3-kinase) and phosphatidylinositol 4-kinase (PI4-kinase) enzymes are an important family of signaling molecules that have been implicated in the regulation of intracellular vesicle trafficking. It has previously been shown that PI3-kinase and PI4-kinase enzymes regulate neuronal survival and the retrograde axonal transport of nerve growth factor in sympathetic and sensory neurons. We have extended these studies to examine the role these enzymes play in the regulation of the retrograde axonal transport of neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) in sympathetic and sensory neurons in vivo. Wortmannin (0.1 nmol/eye), a PI3-kinase and PI4-kinase antagonist, reduced the amount of (125)I-NT-3 retrograde transport in sympathetic neurons by approximately 50% and (125)I-NT-4 in sympathetic neurons by approximately 40% and sensory neurons by approximately 20%. The PI3-kinase antagonist LY294002 (100 nmol/eye) reduced the retrograde axonal transport of (125)I-NT-4 in sympathetic and sensory neurons, and (125)I-NT-3 in sympathetic neurons. Phenylarsine oxide (PAO), a PI4-kinase antagonist, significantly inhibited (125)I-NT-4 retrograde axonal transport in sympathetic and sensory neurons. These results show that wortmannin-sensitive PI3-kinases and PI4-kinases may be involved in NT-3 and NT-4 retrograde axonal transport. The retrograde axonal transport of neurotrophic factors in sympathetic and sensory neurons in vivo appears to depend upon the activation of different receptors and second messenger cascades at the nerve terminal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call