Abstract
Ubiquitination of ENaC subunits has been shown to negatively regulate the cell surface expression of ENaC channels. We have previously demonstrated that epsin links ubiquitinated ENaC to clathrin adaptors for clathrin-mediated endocytosis. Epsin is thought to directly modify the curvature of membranes upon binding to phosphatidylinositol 4,5-bisphosphate (PIP2) where it recruits clathrin and stimulates lattice assembly. Murine phosphatidylinositol 4-phosphate 5-kinase alpha (PI5KIalpha) has been shown to enhance endocytosis in a PIP2-dependent manner. We tested the hypothesis that PI5KIalpha-mediated PIP2 production would negatively regulate ENaC current by enhancing epsin-mediated endocytosis of the channel. Expression of PI5KIalpha decreased ENaC currents in Xenopus oocytes by 80%, entirely because of a decrease in cell surface ENaC levels. Catalytically inactive mutants of PI5Kalpha had no effect on ENaC activity. Expression of the PIP2 binding region of epsin increased ENaC current in oocytes, an effect completely reversed by co-expression of PI5KIalpha. Overexpression of epsin reduced amiloride-sensitive current in CCD cells. Overexpression of PI5KIalpha enhanced membrane PIP2 levels and reduced apical surface expression of ENaC in CCD cells, down-regulating amiloride-sensitive current. Knockdown of PI5KIalpha with isoform-specific siRNA resulted in a 4-fold enhancement of ENaC activity. PI5KIalpha localized exclusively to the apical plasma membrane domain when overexpressed in mouse CCD cells, consistent for a role in regulating PIP2 production at the apical plasma membrane. We conclude that membrane turnover events regulating ENaC surface expression and activity in oocytes and CCD cells can be regulated by PI5KIalpha.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.