Abstract

The G protein-coupled receptor kinases (GRKs) phosphorylate agonist occupied G protein-coupled receptors and play an important role in mediating receptor desensitization. The localization of these enzymes to their membrane incorporated substrates is required for their efficient function and appears to be a highly regulated process. In this study we demonstrate that phosphatidylinositol 4, 5-bisphosphate (PIP2) enhances GRK5-mediated beta-adrenergic receptor (betaAR) phosphorylation by directly interacting with this enzyme and facilitating its membrane association. GRK5-mediated phosphorylation of a soluble peptide substrate is unaffected by PIP2, suggesting that the PIP2-enhanced receptor kinase activity arises as a consequence of this membrane localization. The lipid binding site of GRK5 exhibits a high degree of specificity and appears to reside in the amino terminus of this enzyme. Mutation of six basic residues at positions 22, 23, 24, 26, 28, and 29 of GRK5 ablates the ability of this kinase to bind PIP2. This region of the GRK5, which has a similar distribution of basic amino acids to the PIP2 binding site of gelsolin, is highly conserved between members of the GRK4 subfamily (GRK4, GRK5, and GRK6). Indeed, all the members of the GRK4 subfamily exhibit PIP2-dependent receptor kinase activity. We have shown previously that the membrane association of betaARK (beta-adrenergic receptor kinase) (GRK2) is mediated, in vitro, by the simultaneous binding of PIP2 and the betagamma subunits of heterotrimeric G proteins to the carboxyl-terminal pleckstrin homology domain of this enzyme (Pitcher, J. A., Touhara, K., Payne, E. S., and Lefkowitz, R. J. (1995) J. Biol. Chem. 270, 11707-11710). Thus, five members of the GRK family bind PIP2, betaARK (GRK2), betaARK2 (GRK3), GRK4, GRK5, and GRK6. However, the structure, location, and regulation of the PIP2 binding site distinguishes the betaARK (GRK2 and GRK3) and GRK4 (GRK4, GRK5, and GRK6) subfamilies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.