Abstract

By using a rapid procedure of isolation of microsomes, we have shown that the liver glucose-6-phosphatase activity was lowered by about 30% (p < 0.001) after refeeding for 360 min rats previously unfed for 48 h, whereas the amount of glucose-6-phosphatase protein was not lowered during the same time. The amount of the regulatory subunit (p85) and the catalytic activity of phosphatidylinositol 3-kinase (PI3K) were higher by a factor of 2.6 and 2.4, respectively (p < 0.01), in microsomes from refed as compared with fasted rats. This resulted from a translocation process because the total amount of p85 was the same in the whole liver homogenates from fasted and refed rats. The amount of insulin receptor substrate 1 (IRS1) was also higher by a factor of 2.6 in microsomes from refed rats (p < 0. 01). Microsome-bound IRS1 was only detected in p85 immunoprecipitates. These results strongly suggest that an insulin-triggered mechanism of translocation of PI3K onto microsomes occurs in the liver of rats during refeeding. This process, via the lipid products of PI3K, which are potent inhibitors of glucose-6-phosphatase (Mithieux, G., Danièle, N., Payrastre, B., and Zitoun, C. (1998) J. Biol. Chem. 273, 17-19), may account for the inhibition of the enzyme and participate to the inhibition of hepatic glucose production occurring in this situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.