Abstract

Yeast phosphatidylinositol (PI)/phosphatidylcholine (PC) transfer protein, Sec14p, is essential for protein transport from the Golgi apparatus and for the cell viability. It is instrumental in maintaining the lipid composition of the Golgi membranes to be compatible with vesicle biogenesis and the secretory process by coordination of PC and PI metabolism. To address the question to which extent PC transfer ability of Sec14p is required for its essential in vivo function we generated a Sec14p mutant unable to transfer PC between membranes in the in vitro assay. Yeast cells with this modified Sec14p D115G as a sole Sec14p were viable with improved secretory activity compared to sec14 deficient strain. Thus, in vitro PC transfer ability of Sec14p is not required for its essential function(s) in living cells, however, yeast cells having PC transfer deficient Sec14p D115G as a sole Sec14p display regulatory abnormalities, including increased phospholipase D mediated PC turnover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.