Abstract
The traditional (parallel) model of molecular species synthesis of phosphatidylcholine is based on the substrate specificity of two glycerolphosphate acyltransferases. Preformed molecular species of diacylglycerols are then converted to phosphatidylcholine. In this investigation, we used [1,2,3,4-(13)C(4)]palmitate as a tracer to determine the turnover rates of diacylglycerols and phosphatidylcholines. In HL60 cells, the fractional turnover rate is 34.1 +/- 16.6%/h for 1,2-dipalmitoylglycerophosphocholine (16:0,16:0-GPC), which accounts for approximately 10% of total diacylglycerol turnover. The turnover rates of other phosphotidylcholines reflect the primary event of 16:0,16:0-GPC turnover. In addition, the distribution of mass isotopomers is used to study the biosynthesis of diacylglycerols and phosphatidylcholines. On the basis of precursor-product enrichments, we propose a sequential model to account for the synthesis of phosphatidylcholine molecular species. In this model, 1,2-dipalmitoylglycerol is the only molecular species used for the synthesis of phosphatidylcholine. This precursor is converted to 1,2-dipalmitoylglycerophosphocholine, which is then deacylated to provide substrates for chain elongation and/or desaturation. These modified acyl substrates are then reacylated back to form other molecular species. This sequential model is consistent with palmitate being the dominant fatty acid product derived from mammalian fatty acid synthase. It has the advantage of protecting cells from acyl modification by exogenous substrates. Furthermore, this sequence generates only inert 1,2-dipalmitoylglycerol instead of the active diacylglycerol molecular species that contain unsaturated fatty acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.