Abstract
Phosphatidate phosphatases play essential roles in lipid metabolism by converting phosphatidic acid to diacylglycerol. Here, we have investigated the roles of a phosphatidate phosphatase, Pah1, in the fungal pathogen Candida albicans. Deleting PAH1 causes multiple phenotypes, especially severe hyphal defects, increased sensitivity to cell wall stress, and reduced virulence in mice. By qPCR, we detected a significant downregulation of hyphal-specific genes including two key hyphal-promoting genes UME6 and HGC1. Overexpression of UME6 in pah1Δ/Δ cells largely restored the hyphal growth, indicating that the reduced expression of UME6 is primarily responsible for the hyphal defects. We also detected decreased expression of three hyphal-promoting transcription factors EFG1, FLO8, and CPH1 in pah1 mutants, consistent with the reduced expression of UME6. Furthermore, the pah1Δ/Δ mutant exhibited increased sensitivity to cell wall stress. During systemic infection of mice, the mutant showed significantly impaired ability to colonize the kidney and to kill the host. Together, C. albicans PAH1 plays an important role in hyphal growth, adaptability to environmental stresses, and virulence. Thus, Pah1 could be targeted for the development of new antifungal drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.