Abstract

AbstractArthropods other than trilobites or bradoriids constitute a major component of many Cambrian Burgess‐Shale‐type Lagerstätten. Owing to their scarcity in other less well‐preserved deposits, they are generally regarded as lightly sclerotized but non‐mineralized. Here we show that Chuandianella ovata, one of the typical lightly sclerotized arthropods from the Chengjiang biota, reinforced its carapace with phosphatic mineralization. Multiple methods reveal a pitted microstructure and organophosphatic composition of the carapace. Nanogranules of amorphous calcium phosphate (ACP) on the fossil carapace are comparable to those of recent crustacean microstructures, implying that arthropods may have a conserved mechanism of phosphatic mineralization since the Cambrian. The fossil record indicates that the mineralization of ecdysozoans, preceded by the mineralization of lophotrochozoans in the Terreneuvian (~541–521 Ma), appeared in Cambrian Stage 3 (~521–514 Ma) and surpassed the range of living counterparts in phylogenetic coverage. This phenomenon strengthens the view that biomineralization has evolved multiple times independently within the Metazoa. The sudden appearance of mineralized skeletons in the early history of metazoan evolution is frequently attributed to external environment drivers. However, this viewpoint cannot explain the minerology and appearance time of metazoan lineages with mineralized hard parts during the Cambrian explosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.