Abstract
Several 2'-deoxythymidine 5'-triphosphate and 3'-azido-2', 3'-dideoxythymidine 5'-triphosphate analogs containing a hydrophobic phosphonate group instead of the gamma-phosphate were synthesized and evaluated as substrates for human immunodeficiency virus (HIV) and avian myeloblastosis virus reverse transcriptases, human placental DNA polymerases alpha and beta, and calf thymus terminal deoxynucleotidyl transferase. They were efficiently incorporated into the DNA chain by the retroviral enzymes but were not utilized by the mammalian ones. Also, some gamma-ester and gamma-amide derivatives of dTTP and 3'-azido-2',3'-dideoxythymidine 5'-triphosphate (AZTTP) were synthesized and studied. They proved to be substrates for both the retroviral and mammalian enzymes under study. The Km values for incorporation of the dTTP derivatives into the DNA chain were close to those for dTTP and AZTTP. The Km for the AZTTP derivatives were one order of magnitude greater than those for dTTP and AZTTP. The results obtained indicate that HIV and avian myeloblastosis virus reverse transcriptases have no sterical obstacles for binding the triphosphate fragment bearing a bulky substituent at the gamma-position. Modification of the gamma-phosphate in AZTTP increased the selectivity of HIV reverse transcriptase inhibition versus DNA polymerase alpha. gamma-Methylphosphonate and gamma-phenylphosphonate were dephosphorylated in human serum much less rapidly than AZTTP. Besides, they were shown to be markedly more hydrophobic than AZTTP. Thus, replacement of the gamma-phosphate in AZTTP with gamma-phosphonate markedly alters its substrate properties toward some cellular DNA polymerases and blood dephosphorylating enzymes but does not change its substrate activity with respect to HIV reverse transcriptase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.